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Abstract
Let G be a compact Lie group acting transitively on Riemannian manifolds Mi

and let π : M1 → M2 be a G-equivariant Riemannian submersion. We show
that a smooth differential form φ on M2 has finite Fourier series on M2 if and
only if the pull back π∗φ has finite Fourier series on M1.

PACS numbers: 02.20.Qs, 02.30.Em, 02.30.Nw, 02.40.Vh

1. Introduction

The spectral geometry of homogeneous Riemannian submersions has been discussed by many
authors in a variety of physical contexts. For example, Bérard-Bergery, and Bourguignon
[4] study the Laplacian of a Riemannian submersion and provide an application to quantum
physics. Also, Boiteux [5] studies the Coulumb potential via a fiber bundle formulation of
mechanics, and we direct the reader who is interested in this particular physical application
to remark 1.3; see [13, 17] for subsequent work. The spectral geometry of homogeneous
Riemannian submersions also plays an important role in the study of non-bijective canonical
transformations; we refer, for example, to the discussion in Lambert and Kibler [14] (see also
[6, 11, 15, 16] for later work). Gilkey, Leahy and Park [9] study the spectral geometry of the
Hopf fibration S1 → S3 → S2 and provide an overview of the potential physical applications.
Their work continues in [10], where the authors give a more extensive discussion of these
applications; see also Bao and Shen [1].

Let M be a compact smooth closed Riemannian manifold of dimension m, and let �
p

M

be the Laplace–Beltrami operator acting on the space C∞(�pM) of smooth p-forms. Let
Spec

(
�

p

M

)
be the spectrum of �

p

M ; this is a discrete countable set of non-negative real
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numbers. The associated eigenspaces E
(
λ,�

p

M

)
are finite dimensional and there is a complete

orthonormal decomposition

L2(�pM) = ⊕λ∈Spec(�p

M)E
(
λ,�

p

M

)
(1a)

which we may use to decompose a smooth p-form φ on M in the form φ = ∑
λ φλ, where

φλ ∈ E
(
λ,�

p

M

)
. We say φ has finite Fourier series on M if this is a finite sum. If p = 0 and

if M = S1, then this yields, modulo a slight change of notation, the classical Fourier series
decomposition f (θ) = ∑

n an einθ and a function has a finite Fourier series on the circle if and
only if it is a trigonometric polynomial. There is an extensive literature on the subject with
appropriate physical applications, several representative items being [2, 3, 7, 8, 18].

We say that M is a homogeneous space if there is a compact Lie group G which acts
transitively on M by isometries; if H is the isotropy subgroup associated with some point
P ∈ M , then we may identify M = G/H . We may choose a left-invariant metric g̃ on G so g

is the induced metric or, equivalently, that π : (G, g̃) → (M, g) is a Riemannian submersion.
The following is the main result of this paper:

Theorem 1.1. Let π : G → G/H , where H is a Lie subgroup of a compact Lie group G. Let
g̃ be a left-invariant Riemannian metric on G and let g be the induced Riemannian metric on
G/H . Then a p-form φ on G/H has finite Fourier series on G/H if and only if π∗φ has finite
Fourier series on G.

There is an associated corollary which is useful in applications.

Corollary 1.2. Let G be a compact Lie group acting transitively on Riemannian manifolds
M1 and M2. Let π : M1 → M2 be a G-equivariant Riemannian submersion. If φ is a smooth
p-form on M2, then φ has finite Fourier series on M2 if and only if π∗φ has finite Fourier
series on M1.

Remark 1.3. The Hopf fibration π : S2n+1 → CP
n is a U(n + 1) equivariant Riemannian

submersion which is an important non-canonical transformation used to study the Coulumb
problem, see, for example, the discussion in [5]. Corollary 1.2 shows φ has finite Fourier
series on CP

n if and only if π∗φ has finite Fourier series on S2n+1.

2. The proof of theorem 1.1

The central ingredient in our discussion is the classical Peter–Weyl theorem [12]. Let Irr(G)

be the collection of equivalence classes of irreducible finite dimensional representations of G;
if ρ ∈ Irr(G), let Vρ be the associated representation space. The Hilbert space structure on
L2(�p(G)) depends on the particular Riemannian metric which is chosen. However different
Riemannian metrics give rise to equivalent norms so the Banach space structure on this space
is invariantly defined; this is a minor observation which will be useful in section 4. Left
multiplication defines an action of G on L2(�p(G)). This action decomposes as a direct sum

L2(�pG) = ⊕ρ∈Irr(G)Wρ, (2a)

where each Wρ is a finite dimensional invariant subspace of L2(�p(G)) which is isomorphic
to the direct sum of finite number of copies of Vρ . If � is a smooth p-form on G, we
may use equation (2a) to decompose � = ∑

ρ �ρ for �ρ ∈ Wρ . We say that � has finite
G-representation series on G if this sum is finite; we emphasize that this notion is independent
of the particular Riemannian metric chosen.
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Since we have taken the induced metric on G/H , the map π is a Riemannian submersion.
Thus we have a pointwise estimate |π∗φ(g)| = |φ(πg)|. Since the volume form on G is
bi-invariant, the fibers have constant volume. Thus

|π∗φ|L2(�p(G)) =
√

vol(H)|φ|L2(�p(G/H)).

Consequently π∗ is an injective G-equivariant map from L2(�p(G/H)) to L2(�p(G)) with
closed image. The decomposition

L2(�pG) = π∗(L2(�p(G/H))) ⊕ {π∗(L2(�p(G/H)))}⊥
is G-equivariant. We therefore have an orthogonal direct sum decomposition of L2(�p(G/H))

as a representation space for G in the form

L2(�p(G/H)) = ⊕ρ∈Irr(G)Xρ, (2b)

where

π∗Xρ = Wρ ∩ π∗(L2(�p(G/H))). (2c)

We say that a p-form φ on G/H has finite G-representation series if the expansion φ = ∑
ρ φρ

given by equation (2a) is finite. Theorem 1.1 will follow from the following:

Lemma 2.1. Adopt the notation established above. Let φ be a p-form on G/H . Fix a
left-invariant g̃ metric on G and let g be the induced metric on G/H . The following assertions
are equivalent:

(i) φ has finite Fourier series on G/H .
(ii) φ has finite G-representation series on G/H .

(iii) π∗φ has finite Fourier series on G.
(iv) π∗φ has finite G-representation series on G.

We remark that elliptic regularity shows such a φ is necessarily smooth.

Proof. The equivalence of assertions (ii) and (iv) is immediate from equation (2a). We argue as
follows to prove that assertion (i) implies assertion (ii). Suppose that φ has finite Fourier series
on G/H . Since G acts by isometries, G commutes with the Laplacian. Thus E

(
λ,�

p

G/H

)

is a finite dimensional representation space for G. Only a finite number of representations
occur in the representation decomposition of E

(
λ,�

p

G/H

)
and thus any eigen p-form on

G/H has finite G-representation series on G/H ; more generally, of course, any finite sum of
eigen p-forms on G/H has finite G-representation series on G/H . This shows that assertion
(i) implies assertion (ii); a similar argument shows assertion (iii) implies assertion (iv).

Each representation appears with finite multiplicity in L2(�p(G/H)). Thus each
representation appears in the decomposition of E

(
λ,�

p

G/H

)
for only a finite number of λ.

Thus any element of Xρ has finite Fourier series and more generally any p-form on G/H with
finite G-representation series has finite Fourier series. Thus assertion (ii) implies assertion (i);
similarly, assertion (iv) implies assertion (iii). �

3. The proof of corollary 1.2

Let π : M1 → M2 be a G-equivariant Riemannian submersion; this means that we may
express Mi = G/Hi , where H1 ⊂ H2 ⊂ G. Let πi : G → G/Hi be the natural projections.
We then have ππ1 = π2 and thus π∗

2 = π∗
1 π∗. Let φ be a smooth p-form on G/H2. We apply

theorem 1.1 to derive the following chain of equivalent statements from which corollary 1.2
will follow:
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(i) φ has finite Fourier series on G/H2.
(ii) π∗

2 φ has finite Fourier series on G.
(iii) π∗

1 (π∗φ) has finite Fourier series on G.
(iv) π∗φ has finite Fourier series on G/H1.

4. Conclusions and open problems

Our methods in fact show a bit more. Let gi be two left-invariant metrics on G and let φ be a
smooth p-form on G. Then φ has finite Fourier series with respect to g1 if and only if φ has
finite Fourier series with respect to g2 since both conditions are equivalent to φ having finite
representation series and this notion is independent of the particular metric chosen.

Cayley multiplication defines a Riemannian submersion π : S7 × S7 → S7. The group
of isometries commuting with this action does not, however, act transitively on S7 × S7 and
theorem 1.1 is not applicable. Our research continues in this area as this example has important
physical applications (see, for example, the discussion in Lambert and Kibler [14]).
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