Spectral geometry, homogeneous spaces and differential forms with finite Fourier series

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41135204
(http://iopscience.iop.org/1751-8121/41/13/135204)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:38

Please note that terms and conditions apply.

Spectral geometry, homogeneous spaces and differential forms with finite Fourier series

C Dunn ${ }^{1}$, P Gilkey ${ }^{2}$ and J H Park ${ }^{3,4}$
${ }^{1}$ Mathematics Department, California State University at San Bernardino, San Bernardino, CA 92407, USA
${ }^{2}$ Mathematics Department, University of Oregon, Eugene, OR 97403, USA
${ }^{3}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
E-mail: cmdunn@csusb.edu, gilkey@uoregon.edu and parkj@skku.edu

Received 9 August 2007, in final form 5 February 2008
Published 14 March 2008
Online at stacks.iop.org/JPhysA/41/135204

Abstract

Let G be a compact Lie group acting transitively on Riemannian manifolds M_{i} and let $\pi: M_{1} \rightarrow M_{2}$ be a G-equivariant Riemannian submersion. We show that a smooth differential form ϕ on M_{2} has finite Fourier series on M_{2} if and only if the pull back $\pi^{*} \phi$ has finite Fourier series on M_{1}.

PACS numbers: $\quad 02.20 . \mathrm{Qs}, 02.30 . \mathrm{Em}, 02.30 . \mathrm{Nw}, 02.40 \mathrm{Vh}$

1. Introduction

The spectral geometry of homogeneous Riemannian submersions has been discussed by many authors in a variety of physical contexts. For example, Bérard-Bergery, and Bourguignon [4] study the Laplacian of a Riemannian submersion and provide an application to quantum physics. Also, Boiteux [5] studies the Coulumb potential via a fiber bundle formulation of mechanics, and we direct the reader who is interested in this particular physical application to remark 1.3 ; see $[13,17]$ for subsequent work. The spectral geometry of homogeneous Riemannian submersions also plays an important role in the study of non-bijective canonical transformations; we refer, for example, to the discussion in Lambert and Kibler [14] (see also [$6,11,15,16]$ for later work). Gilkey, Leahy and Park [9] study the spectral geometry of the Hopf fibration $S^{1} \rightarrow S^{3} \rightarrow S^{2}$ and provide an overview of the potential physical applications. Their work continues in [10], where the authors give a more extensive discussion of these applications; see also Bao and Shen [1].

Let M be a compact smooth closed Riemannian manifold of dimension m, and let Δ_{M}^{p} be the Laplace-Beltrami operator acting on the space $C^{\infty}\left(\Lambda^{p} M\right)$ of smooth p-forms. Let $\operatorname{Spec}\left(\Delta_{M}^{p}\right)$ be the spectrum of Δ_{M}^{p}; this is a discrete countable set of non-negative real

[^0]numbers. The associated eigenspaces $E\left(\lambda, \Delta_{M}^{p}\right)$ are finite dimensional and there is a complete orthonormal decomposition
\[

$$
\begin{equation*}
L^{2}\left(\Lambda^{p} M\right)=\oplus_{\lambda \in \operatorname{Spec}\left(\Delta_{M}^{p}\right)} E\left(\lambda, \Delta_{M}^{p}\right) \tag{1a}
\end{equation*}
$$

\]

which we may use to decompose a smooth p-form ϕ on M in the form $\phi=\sum_{\lambda} \phi_{\lambda}$, where $\phi_{\lambda} \in E\left(\lambda, \Delta_{M}^{p}\right)$. We say ϕ has finite Fourier series on M if this is a finite sum. If $p=0$ and if $M=S^{1}$, then this yields, modulo a slight change of notation, the classical Fourier series decomposition $f(\theta)=\sum_{n} a_{n} \mathrm{e}^{\mathrm{i} n \theta}$ and a function has a finite Fourier series on the circle if and only if it is a trigonometric polynomial. There is an extensive literature on the subject with appropriate physical applications, several representative items being [2, 3, 7, 8, 18].

We say that M is a homogeneous space if there is a compact Lie group G which acts transitively on M by isometries; if H is the isotropy subgroup associated with some point $P \in M$, then we may identify $M=G / H$. We may choose a left-invariant metric \tilde{g} on G so g is the induced metric or, equivalently, that $\pi:(G, \tilde{g}) \rightarrow(M, g)$ is a Riemannian submersion. The following is the main result of this paper:

Theorem 1.1. Let $\pi: G \rightarrow G / H$, where H is a Lie subgroup of a compact Lie group G. Let \tilde{g} be a left-invariant Riemannian metric on G and let g be the induced Riemannian metric on G / H. Then a p-form ϕ on G / H has finite Fourier series on G / H if and only if $\pi^{*} \phi$ has finite Fourier series on G.

There is an associated corollary which is useful in applications.
Corollary 1.2. Let G be a compact Lie group acting transitively on Riemannian manifolds M_{1} and M_{2}. Let $\pi: M_{1} \rightarrow M_{2}$ be a G-equivariant Riemannian submersion. If ϕ is a smooth p-form on M_{2}, then ϕ has finite Fourier series on M_{2} if and only if $\pi^{*} \phi$ has finite Fourier series on M_{1}.

Remark 1.3. The Hopf fibration $\pi: S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ is a $U(n+1)$ equivariant Riemannian submersion which is an important non-canonical transformation used to study the Coulumb problem, see, for example, the discussion in [5]. Corollary 1.2 shows ϕ has finite Fourier series on $\mathbb{C} \mathbb{P}^{n}$ if and only if $\pi^{*} \phi$ has finite Fourier series on $S^{2 n+1}$.

2. The proof of theorem 1.1

The central ingredient in our discussion is the classical Peter-Weyl theorem [12]. Let $\operatorname{Irr}(G)$ be the collection of equivalence classes of irreducible finite dimensional representations of G; if $\rho \in \operatorname{Irr}(G)$, let V_{ρ} be the associated representation space. The Hilbert space structure on $L^{2}\left(\Lambda^{p}(G)\right)$ depends on the particular Riemannian metric which is chosen. However different Riemannian metrics give rise to equivalent norms so the Banach space structure on this space is invariantly defined; this is a minor observation which will be useful in section 4. Left multiplication defines an action of G on $L^{2}\left(\Lambda^{p}(G)\right)$. This action decomposes as a direct sum

$$
\begin{equation*}
L^{2}\left(\Lambda^{p} G\right)=\oplus_{\rho \in \operatorname{Irr}(G)} W_{\rho} \tag{2a}
\end{equation*}
$$

where each W_{ρ} is a finite dimensional invariant subspace of $L^{2}\left(\Lambda^{p}(G)\right)$ which is isomorphic to the direct sum of finite number of copies of V_{ρ}. If Φ is a smooth p-form on G, we may use equation (2a) to decompose $\Phi=\sum_{\rho} \Phi_{\rho}$ for $\Phi_{\rho} \in W_{\rho}$. We say that Φ has finite G-representation series on G if this sum is finite; we emphasize that this notion is independent of the particular Riemannian metric chosen.

Since we have taken the induced metric on G / H, the map π is a Riemannian submersion. Thus we have a pointwise estimate $\left|\pi^{*} \phi(g)\right|=|\phi(\pi g)|$. Since the volume form on G is bi-invariant, the fibers have constant volume. Thus

$$
\left|\pi^{*} \phi\right|_{L^{2}\left(\Lambda^{p}(G)\right)}=\sqrt{\operatorname{vol}(H)}|\phi|_{L^{2}\left(\Lambda^{p}(G / H)\right)} .
$$

Consequently π^{*} is an injective G-equivariant map from $L^{2}\left(\Lambda^{p}(G / H)\right)$ to $L^{2}\left(\Lambda^{p}(G)\right)$ with closed image. The decomposition

$$
L^{2}\left(\Lambda^{p} G\right)=\pi^{*}\left(L^{2}\left(\Lambda^{p}(G / H)\right)\right) \oplus\left\{\pi^{*}\left(L^{2}\left(\Lambda^{p}(G / H)\right)\right)\right\}^{\perp}
$$

is G-equivariant. We therefore have an orthogonal direct sum decomposition of $L^{2}\left(\Lambda^{p}(G / H)\right)$ as a representation space for G in the form

$$
\begin{equation*}
L^{2}\left(\Lambda^{p}(G / H)\right)=\oplus_{\rho \in \operatorname{Irr}(G)} X_{\rho} \tag{2b}
\end{equation*}
$$

where

$$
\begin{equation*}
\pi^{*} X_{\rho}=W_{\rho} \cap \pi^{*}\left(L^{2}\left(\Lambda^{p}(G / H)\right)\right) \tag{2c}
\end{equation*}
$$

We say that a p-form ϕ on G / H has finite G-representation series if the expansion $\phi=\sum_{\rho} \phi_{\rho}$ given by equation $(2 a)$ is finite. Theorem 1.1 will follow from the following:

Lemma 2.1. Adopt the notation established above. Let ϕ be a p-form on G / H. Fix a left-invariant \tilde{g} metric on G and let g be the induced metric on G / H. The following assertions are equivalent:
(i) ϕ has finite Fourier series on G / H.
(ii) ϕ has finite G-representation series on G / H.
(iii) $\pi^{*} \phi$ has finite Fourier series on G.
(iv) $\pi^{*} \phi$ has finite G-representation series on G.

We remark that elliptic regularity shows such a ϕ is necessarily smooth.
Proof. The equivalence of assertions (ii) and (iv) is immediate from equation (2a). We argue as follows to prove that assertion (i) implies assertion (ii). Suppose that ϕ has finite Fourier series on G / H. Since G acts by isometries, G commutes with the Laplacian. Thus $E\left(\lambda, \Delta_{G / H}^{p}\right)$ is a finite dimensional representation space for G. Only a finite number of representations occur in the representation decomposition of $E\left(\lambda, \Delta_{G / H}^{p}\right)$ and thus any eigen p-form on G / H has finite G-representation series on G / H; more generally, of course, any finite sum of eigen p-forms on G / H has finite G-representation series on G / H. This shows that assertion (i) implies assertion (ii); a similar argument shows assertion (iii) implies assertion (iv).

Each representation appears with finite multiplicity in $L^{2}\left(\Lambda^{p}(G / H)\right)$. Thus each representation appears in the decomposition of $E\left(\lambda, \Delta_{G / H}^{p}\right)$ for only a finite number of λ. Thus any element of X_{ρ} has finite Fourier series and more generally any p-form on G / H with finite G-representation series has finite Fourier series. Thus assertion (ii) implies assertion (i); similarly, assertion (iv) implies assertion (iii).

3. The proof of corollary 1.2

Let $\pi: M_{1} \rightarrow M_{2}$ be a G-equivariant Riemannian submersion; this means that we may express $M_{i}=G / H_{i}$, where $H_{1} \subset H_{2} \subset G$. Let $\pi_{i}: G \rightarrow G / H_{i}$ be the natural projections. We then have $\pi \pi_{1}=\pi_{2}$ and thus $\pi_{2}^{*}=\pi_{1}^{*} \pi^{*}$. Let ϕ be a smooth p-form on G / H_{2}. We apply theorem 1.1 to derive the following chain of equivalent statements from which corollary 1.2 will follow:
(i) ϕ has finite Fourier series on G / H_{2}.
(ii) $\pi_{2}^{*} \phi$ has finite Fourier series on G.
(iii) $\pi_{1}^{*}\left(\pi^{*} \phi\right)$ has finite Fourier series on G.
(iv) $\pi^{*} \phi$ has finite Fourier series on G / H_{1}.

4. Conclusions and open problems

Our methods in fact show a bit more. Let g_{i} be two left-invariant metrics on G and let ϕ be a smooth p-form on G. Then ϕ has finite Fourier series with respect to g_{1} if and only if ϕ has finite Fourier series with respect to g_{2} since both conditions are equivalent to ϕ having finite representation series and this notion is independent of the particular metric chosen.

Cayley multiplication defines a Riemannian submersion $\pi: S^{7} \times S^{7} \rightarrow S^{7}$. The group of isometries commuting with this action does not, however, act transitively on $S^{7} \times S^{7}$ and theorem 1.1 is not applicable. Our research continues in this area as this example has important physical applications (see, for example, the discussion in Lambert and Kibler [14]).

Acknowledgments

Research of C Dunn partially supported by a CSUSB faculty research grant. Research of P Gilkey partially supported by the Max Planck Institute in the Mathematical Sciences (Leipzig, Germany). Research of both C Dunn and P Gilkey partially supported by the University of Santiago (Spain) (Project MTM2006-01432). Research of J H Park partially supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) KRF-2007-531-C00008.

References

[1] Bao D and Shen Z 2002 J. London Math. Soc. 66453
[2] Blevins R D 1997 J. Sound Vib. 208617
[3] Blevins R D 2002 J. Appl. Mech.-Trans. ASME 69317
[4] Berard-Bergery L and Bourguignon J-P 1982 Illinois J. Math. 26181
[5] Boiteux M 1982 J. Math. Phys. 231311
[6] Coffey M W 2007 Phys. Lett. A 362352
[7] Dinur N and Wulich D 2001 IEEE Trans. Commun. 491063
[8] Fisher C and Schmidt B 2006 J. Aust. Math. Soc. 8121
[9] Gilkey P, Leahy J and Park J H 1996 J. Phys. A Math. Gen. 295645
[10] Gilkey P, Leahy J and Park J H 1999 Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture (London: Chapman and Hall)
[11] Hakobyan Y and Ter-Antonyan V 2005 Phys. At. Nuclei 681709
[12] Hall B 2003 Lie Groups, Lie Algebras and Representations (Berlin: Springer)
[13] Kibler M 2004 Mol. Phys. 1021221
[14] Lambert D and Kibler M 1988 J. Phys. A. Math. Gen. 21307
[15] Leach P and Nucci M 2004 J. Math. Phys. 453590
[16] Mardoyan L, Pogosyan G and Sissakian A 2003 Theor. Math. Phys. 135808
[17] Michel L and Zhilinskii B 2001 Phys. Rep. 341173
[18] Reut Z 2000 J. Sound Vib. 232490

[^0]: ${ }^{4}$ Corresponding author.

